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Abstract. This paper presents a discussion of the results of a verification test using an unsteady manufactured
solution in a numerical code of high order of accuracy. The verification procedure was performed by introducing
a forcing term in the Navier-Stokes equation creating a nonrealistic problem that has an analytical solution. An
important advantage of the Method of Manufactured Solutions compared with standard verification procedure is
that it allows exercising the full governing equations sustaining the original boundary conditions implemented in
the code. Moreover, if the code computates the fictitious problem without programming errors then the conversion
of the code to compute the real problem is done only deleting the source term in the Navier-Stokes equations.
The numerical solution was compared with the manufactured solution and a mesh convergence test to quantify the
order of accuracy of the numeric code was made. As explained in this paper, the mesh convergence test must be
carried out for small simulation time. Then simulation of the fictitious problem for a long time simulation also
was performed. Therefore, it was possible to verify if programming error grew after a long time simulation.

keywords: Temporal Numerical Simulation, Verification Test, Method of Manufactured Solutions, High Order
Compact Finite Differences, Spectral Method.

1. Introduction

Due the strong technological advance of computers, Computational Fluids Dynamics (CFD) has been a field
of great importance in Fluids Mechanics, and became a strong ally of experimental and theoretical studies for
the interpretation of physical phenomena.

Numerical codes are developed and utilized by researchers and engineers and they should give confidence
that the results of the numerical simulation are a good representation of the problem under study. Therefore
the concepts at verification and validation should be applied. Verification and validation are different concepts,
where one can not be substituted by other. According to Roache, 1997, verification is a study of numerical
code that consists in assuring that the equations chosen to a given model are resolved correctly and validation
assures that the chosen equations are adequate to study the physical problem. In other words, a verification
test should give confidence that programming error from implementation of equations, of boundary conditions
and of the discretization scheme does not affect the accuracy of the numerical solution. On the other hand,
comparisons between the numerical solution of the physical problem with theorical and experimental results
that has been documented in the literature can be classified as validation test.

The proposal of the present paper is to discuss some results of a purely mathematical verification test using
the Method of Manufactured Solutions (MMS). This test was applied in a numerical code of high order of
accuracy that intended for simulating an incompressible two-dimensional flow. The basic idea of the MMS is to
introduce a source term in the equations creating a nonrealistic problem that has an analytical solution. After,
this manufactured solution can be used for comparisons with numerical results (Shih, 1985; Steinberg e Roache,
1985). An advantage of using the MMS compared with standard verification procedure, such as code-to-code
comparison and the simulation of benchmark solutions, is that the MMS is capable of exercising fully the code



and makes it possible to evaluate all of the leading error terms in the discretization of the equations (Roache,
1998). Also using other methods it is not easy to find a solution that satisfies the boundary conditions of the
problem under study. On the other hand, using the MMS it is quite simple to create an analytical solution that
satisfies these boundary conditions. In general the MMS does not represent a flow that is realistic or physically
realizable, but, it can give good confidence of the numerical code performance.

Some of the first researchers that proposed the use of the MMS for the purpose of code verification are
Shih, 1985, and Steinberg e Roache, 1985. Already in 1986 the MMS was recommended as a good verification
test by editors of the ASME Journal of Fluids Engineering (JFE). They published a brief policy statement
requiring that, in a paper that presents numerical simulation, at least minimal attention should be paid to
the quantification of numerical accuracy (Roache e White, 1986). Later, the policy statement was expanded
and also adopted by other research journals (Freitas, 1993; Roache, 1994; ASME, 1994; ATAA, 1994; Gresho e
Taylor, 1994).

The MMS can be applied together with a systematic mesh convergent test. Therefore it is possible to verify
the order of accuracy of the solution scheme and it help to eliminate programming mistakes in the code (Roache,
1998). Nevertheless it is hard to assure that the numerical code is totally free of programming errors and that
the order of accuracy obtained is the one expected. This is particularly important in typical simulations in
engineering as, for example, flows over solids walls (boundary layer, Poiseuille flow, Couette flow, etc) where it
is often necessary to use different orders of the approximations to the discretization in the wall normal direction.
These cases results in a more complex multi order solution scheme, where it is hard to estimate a priori the
order of accuracy to compare with the order of accuracy obtained via mesh convergent test.

A verification of the order of accuracy of a version of the present numerical code, which uses compact finite
difference scheme in the streamwise direction, can be found in Silva et al., 2005. The verification of accuracy
of the code was performed using a steady manufactured solution. One important conclusion was that the order
of accuracy can depend on the chosen manufactured solution. In particular, on the values of the high order
derivatives of the manufactured solution. For the present work an unsteady manufactured solution was used and
two tests were performed. The first test was done assuming a small simulation time. This fact was necessary
because a mesh refinement test in the wall normal direction was performed. Then the order of accuracy of the
numerical code was obtained. The second test was done assuming a long simulation time. The ojective of the
second test was to verify if programming errors, when it exists in the present code, increases in time.

The governing equations were written in a vorticity-velocity formulation only for the disturbances. The
base flow was given and kept constant throughout the simulation. Since the flow is periodic in the streamwise
direction then spectral method in this direction was used. Therefore the flow was divided into Fourier modes.
Compact finite difference methods of 5t and 6" order of accuracy in the wall normal direction was utilized
for every Fourier modes except for the primary Fourier mode, where compact finite difference of 4th and 5"
order in this same direction was utilized. For the temporal integration a 4th order Runge Kutta scheme was
implemented. The present numerical code was developed to simulate the linear and nonlinear evolution of
unsteady infinitesimal disturbance propagating in a plane Poiseuille flow. Moreover, modulated waves as the
wavepackets type will be simulated. Some numerical results obtained via the present code were compared with
the Linear Stability Theory (LST) and presented in Crepaldi et al., 2006.

The organization of the paper is as follow. Section 2 presents the formulation and the boundary conditions
adopted in the current work. Section 3 gives the verification procedure using the MMS together with a mesh
convergent test and the results obtained. Section 4 gives some final remarks.

2. Formulation
2.1. Governing Equations

In the current work the governing equations for an incompressible two-dimensional flow were written in a
vorticity-velocity formulation. The velocity components 4 and ¥ and the spanwise vorticity <, were written in
the following form:

dG=up+u; D=vp+v; J,=w.p+uws, (1)

where the terms with subscript 5 and the terms without subscripts represent the base flow (Poiseuille) and the
disturbance components respectively.

Substituting the expression (1) in the spanwise vorticity transport equation and canceling the terms that
satisfy the Poiseuille solution, one obtains the Navier-Stokes equation in a disturbance formulation:

Oow, n @ n % _ 1 Pw, w,
ot  0x 0Oy Re \ 0x2 oy? )’

(2)

where ¢ = upw, + uw, g + uw, and b = vw, g + vw, are the nonlinear terms.



The continuity equation is

Ju Ov
oty =0 (3)

Taking the y—derivative of the continuity equation and of the spanwise vorticity

ou Ov
Wz*a—y*%, (4)

one finds a Poisson equation for v,

& + 8_2” _ 0w, (5)
ox2  oy?2  Ox

An analogous scheme can be used to abtain

@ B *v  Ow, ©)
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which was used to calculate the u. More details of this formulation in a tree-dimensional version can be found
in Marxen, 1998.
The above equations were made dimensionless using the following reference parameters: U,,,., which is the
maximum value of velocity in the channel, and H, which is half the channel height. These variables produce
the following dimensionless parameters:

z* y* u* v* . H P Unaz
T=—=, Y= —7, U= , U= y Wz =W ) = )
H H Uma:c Uma:c - : Umax H

where the terms with an asterisk are dimensional. The Reynolds number (Re) is w, were v denotes the
kinematic viscosity.

2.2. Boundary Conditions
A periodic boundary condition was adopted in the streamwise direction (x—direction) and for the wall normal

direction (y—direction) a non-slip and impermeability ( v = v = 0 in the walls ) conditions were imposed. The
flow geometry is presented in fig. 1.
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Figure 1: Schematic diagram of physical system

A crucial problem of the vorticity-velocity formulation is that there are no explicit boundary conditions for
the vorticity at the wall. It must be computed from the velocity field assuring that the boundary conditions for
the velocity are satisfied maintaining consistency and conservation of mass. The calculation of the vorticity at
the wall was performed via the equations (5) and (6) and using the fact % = 0 at the wall.



2.3. Numerical Method

In the z—direction, a spectral method was used. In this method, a generic quantity s can be decomposed
in Fourier modes (ay) of the following form:

K

s(z,y,t) = ZSk(y,t)efia”, (7)

k=0

where s represents the variables u, v, w, and a and b of equation (2). Sj represents the discrete Fourier
components of the function s.
Substituting equation (7) in equations (2), (5) and (6) one obtains
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All the Fourier modes oy, ( except the primary Fourier mode ap = 0) were calculated independently using
the equations (8) to (10). The primary Fourier mode calculation «y = 0 was presented in 2.3.1.

In the y—direction, a compact finite difference scheme was used. At the points in the interior of the domain,
the discretization scheme used centered compact finite difference of 6! order of accuracy. For the points in
and near wall boundaries, asymmetric schemes of 5! and 6" order of accuracy were adopted, except to the
wall vorticity calculation, where compact finite difference of 6t" order of accuracy was used. Full Details of the
chosen finite differences can be found in Souza et al., 2005. The chosen finite differences for the calculations in
the y—direction when ay = 0 was presented in 2.3.1.

2.3.1. The Primary Fourier Mode «g

Making ap = 0 in the equations (8) to (10), one obtains the following equations:

9., 9By 1 9°Q,

_ 1 11
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Uy 09,
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The equation (11) was used to calculation ., only at the interior of the domain. The equation (12)
together with the impermeability condition resulted in Vy = 0 for every domain. The equation (13) was used
to calculation Uj for every domain. Since there is no boundary condition for 2,¢ at the wall, it was calculated
using the vorticity definition equation

oUy
Q. = —. 14
° Iy (14)
Note that the equation (14) cannot precede the equation (13) and vice-versa. Rather, the equations (13)
and (14) should be calculated simultaneously. Two different forms to calculation the equations (13) and (14)
were used. The first was an iterative procedure between the equations (13) and (14). But it resulted in a
numerical instability. Another form to calculate the equations (13) and (14) was done calculating the equation



(13) independently of the Q. calculation at the wall. For this case, the discretization of the term 62% in the
equation (13) was done using the following finite difference:
For the boundary point (y = 0) the following noncentered approximation was adopted:

—25010€2s,, + 40080€2.,, — 212409, + 728082, — 1110€2,,

08, o,
1 o), =
|1 + 137 |2 120Ay

—12
dy dy
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The near boundary point approximation was:
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and for central points a centered approximation was adopted:

00, a4 46(2Z0 L+ 9., a = 3,y + 30,1,
oy 7 oy " oy Ut Ay

+0(Ayh). (17)

For the points at and next to the boundary of the opposite wall (y = 2) the approximations (15) and (16) were
used but with a sign inversion. After the Uy was calculated, then 2., was calculated using the equation (14).

2.3.2. Temporal Integration

The temporal integration was done with an explicit 4th order Runge-Kutta method of four stages (Ferziger
e Peric, 1997). The numerical procedure consisted of the following form: First the manufactured solution (in a
time instant ¢ = 0), presented in the section 3, was introduced in the code as initial condition. Then for each
stage of Runge-Kutta method, the following calculations were necessary:

1. Calculate the nonlinear terms Ay and By, in the physical domain and transforms back to the Fourier space;
2. Calculate the right-hand side of the vorticity transport equation (8);

3. Integrate the vorticity transport equation in a stage;

Calculate the velocity Vj using the equation (9);

Calculate the wall vorticity ., (k # 0) using the same equation (9).

calculate the velocity Uy and the vorticity at wall 2., as described in the section 2.3.1.

Calculate the velocity Uy, (k # 0) using the equation (10).

® N o ot e

Turn off to item 1 and repeat the above calculation until the time simulation expected.

As the Fourier modes were calculated independently, is not necessary the item 6 to be performed before item
7, it was done in this sequence only for a better organization of the numerical code routines.

3. The Verification Procedure: The Method of Manufactured Solutions

The current numerical code was verified using the Method of Manufactured Solutions (MMS). The chosen
manufactured solution has the following form:

u(z,y) = AeYy(y + 1 —V5)(y + 1+ V5)(y — 2)cos(ax — wt),
v(z,y) = Asin(ax — (,ut)ozeny(y2 — 4y +4),
w,(z,y) = —Ae¥cos(ax — wt)(8y? — 8 + 4a’y? + oyt — 40y® — 4y 4 8y — yh).

where A is an amplitude. The manufactured solution was produced using the following procedure: first, the
u—component was chosen to satisfy the boundary conditions. The expression e¥ that appear in u allows that
the y—derivatives of any order were non-zero. The v was obtained using the continuity equation. For the v
to satisfy the boundary conditions, the expressions (y + 1 — v/5) and (y + 1 + v/5) in u were necessaries. w,
was then calculated from vorticity definition via Eq. (4). The requirement of nonzero y—derivatives allowed a
systematic mesh refinement test for obtaining the order of accuracy of the code in the y—direction. Moreover
the chosen manufactured solution oscillates in time with frequence w with a constant amplitude. It allowed to



imitate a neutral Tolmien-Schlichting wave that propagated in the flow direction in time with frequencies w and
wavenumber « along of a Poiseuille flow. Furthermore the chosen manufactured solution was not exponential in
time to avoid confusion with numerical instability problem (Ethier e Steinman, 1994). The parameters a and
w were also made dimensionless by U4, and H. Therefore « = o*H and w = ;j “H

Figure 2 shows the surfaces plot of u, v and w, of the manufactured solution and the energy spectrum of the
Fourier modes in streamwise direction of the €2,. The chosen parameters values were A = 5 x 1074, Re = 10*
and a = w = 1. These parameters values were used when a long time simulation was performed. Contrary of

the mesh refinement test, where the chosen Reynolds number and amplitude were A = Re = 1.
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Figure 2: Surfaces plot of the chosen manufactured solution in the instant ¢ = 0. This manufactured solution
was used as initial condition for all the numerical simulations presented in the paper, but assuming different
parameters values for each simulation.

The manufactured solution described above is analytical solution of the following fictitious problem:

1 [0%w
Re 8952

where the forcing term in physical space is
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96 Ae¥y>cos(ax — wt)sin(ax — wt)aRe +
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The verification test was carried out of two different forms: first, as suggested by Roache, 1998, the order of
accuracy of the code via a mesh refinement test in the y—direction using a small time simulation was performed.
This simulation time was sufficient to the manufactured solution to migrate to numerical solution. After,
numerical simulation of the manufactured solution using an infinitesimal amplitude A and it imitating a neutral
Tolmien-Schilitching wave in the Poiseuille flow was performed, where a long time simulation was adopted.
Contrary to the mesh refinement test that require, as suggested by Ethier e Steinman, 1994, simulation time
very small to avoid truncation errors in time.

The mesh refinement test was realized using double precision in the calculations to avoid round-off error,
the resolution in Fourier space was chosen to be % compared to the resolution in physical space to avoid aliasing
error and a hundred time steps with time step (dt = 1075) was the time simulation to avoid time truncation
error. Therefore, the round-off error, aliasing error and time truncation error were negligible relative for the
truncation error in y—direction. According to the above strategy, only the truncation errors relative to the
y—direction calculations and possible programming errors predominated in the total numerical error. It was
denoted by F,,. The mesh refinement test was made using the parameters A and Re set to 1 assuring that the
terms of the studied equations have the same magnitude order (Roache, 1998). The total numerical error E,,
is expressed by

E, = |fm - fezact| s gpdygm (19)

where f,, represents some numerical solution on mesh m, fe;qct represents the analytical solution of the chosen
fictitious problem, g, is the coefficient (dependent on high-order y—derivatives) of the leading error term and
p is the order of accuracy. Applying the logarithmic function in equation (19) for the a finer mesh m and a
coarser mesh m + 1 it is possible to obtain the order of accuracy by using the following equation

En,
In(—) = pln(ra,), (20)
E.,
with 7y, = 22l
The order of accuracy for the present code was determined using six different meshes (m = 1,...,6) and the

number of intervals doubled from one mesh to the following mesh. The first mesh used was dy = 0.25 and the
spatial domain in the y—direction was 2. This gives eight intervals in the y—direction.

Figures 3 to 5 show the behavior of the average and maximum absolute errors for v, v and w, respectively.
The results were plotted in logarithmic scale. Fig. 3 and 4 show results where the straight line has a slope of
6 for both the mean and the maximum errors. On the other hand, Fig. 5 shows 6 order for the mean error
and 5" order for the maximum error. The resultant 6! order for the maximum error occurred because the
numerical error of the wall vorticity calculation is predominant over the numerical error in the interior of the
domain. This predominance occurred principally because of the boundary condition calculation to €2,, where
the discretization scheme utilized the great values of the high order y—derivatives of €2, in the wall points. More
details on this issue can be found in Silva et al., 2005. But, the resultant order was coherent with the theorical
order.

Despite the obtained order of accuracy was satisfactory, the manufactured solution as an infinitesimal distur-
bance in a long time simulation was also performed. The objective of this simulation was to verify if programming
error increased in time. To the numerical solution of the equation (18) to imitate a neutral Tolmien-Schilitching
wave in Poiseuille flow, the values of the parameters A and Re were 5 x 10~* and 10* respectively. This manu-
factured solution only oscillates in time with constant amplitude and none solution deformation should appear
after a long simulation time. The chosen time step for the present simulation was dt = 0.1454 with 14400 time
steps. This results in a total simulation time in turn of 90 cycles in time. Figure 6 shows the energy spectrum in
Fourier domain of this manufactured solution after the time simulation above described. Comparisons between
the numerical simulations with and without the primary Fourier mode calculation were realized. Note that there
was a nonphysical energy quantitative in the primary Fourier mode when the primary Fourier mode calculation
was performed. This occurred because there is a numerical instability problem in the primary Fourier mode
calculation. The results of this simulation showed that the chosen solution scheme presented in the section 2.3.1
was not sufficient to eliminate the numerical instability in the primary Fourier mode calculation. In attempt
to obtain greater stability for this calculation, a semi implicit scheme to the temporal integration of the wall
normal diffusion terms will be implemented in the present code.
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and without (solid line) the primary Fourier mode calculation. Note the great amplitude of the primary Fourier
mode presented by dashed line. The simulation time was in turn of 90 cycles in time.



4. Final Remarks

In the current work a verification test of a numerical code of high order of accuracy was presented. The
verification test was done using the Method of Manufactured Solutions. Despite the MMS to be a general and
very powerful approach to code verification, it was easy to obtain a manufactured solution that satisfied the
boundary conditions yet implemented in the code without simplifications of the governing equations. Conse-
quently, the nonlinear terms in the Navier-Stokes equations were also estimated. Contrary to others verification
methods as comparison code-to-code or simulation of benchmark solutions, it was possible to exercise all of the
terms in the equations and all of the leading error terms in the discretization scheme. The code verification was
done using one test with a small time simulation and another test with a long time simulation. The test with
a small simulation time was a mesh refinement test combined with order of accuracy verification. Since the
discretization scheme used in this work had different orders of accuracy in the y—direction, depending on the
grid position and on the equation, a lot of attention was required in the analysis of the results. Nevertheless, the
resultant order was coherent with the theorical order of the discretization scheme. For the u and v—components
of velocity, the obtained order was six. But, to the spanwise vorticity €2, the obtained order was five, due the
discretization error from wall vorticity points was dominant compared with the discretization error from others
points of the domain. Another important result was that the use of the average error is not a good technique
for the study of the code order. Because it gave order six for the €2, while that the maximum error technique
gave order five. It helped to conclude that in the code order study, the analysis of the maximum error from
chosen approximation scheme also is important.

The test with a long simulation time was also performed, using the same manufactured solution that was used
to the code order analysis but with different parameters. The parameters A, Re,a and w were chosen to the
manufactured solution to imitate a neutral Tollmien-Schlichting wave propagating in a Poiseuille flow. It helped
to identify if programming error increased in time. The results showed that a numerical instability appeared
when the primary Fourier mode was calculated. But, the current numerical code had a good performance for
the numerical simulations that despise it.

The numerical code will be used to simulate the temporal nonlinear development of modulated and unmo-
dulated waves in a plane Poiseuille flow. Preliminary studies showed that the primary Fourier modes calculation
can not have a strong relevance on the results of these future simulations. Therefore, the paper author’s believe
that numerical simulations without the primary Fourier modes calculation also will be proper to understand
the behavior of the modulated and unmodulated waves in a plane Poiseuille flow in a highly nonlinear stage.

The code validation has been performed comparing the numerical simulation with primary and secondary
stabilities results. Preliminary results of validation of the presented code can be found in Crepaldi et al., 2006.
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